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Introduction (1)

• Traditionally, rotorcraft have limitations on operations in
icing conditions

• Objective to produce affordable all-weather rotorcraft

• Means selected is to improve numerical simulation
methods to reduce and focus development testing
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Introduction (2)

• Develop a full 3-D rotorcraft icing simulation system

• Run development test cases with increasing geometrical
complexity from 2-D airfoil to full rotorcraft including
rotors

• Use existing CFD 3-D technology and apply to icing field

• Benefit from cross-pollination from fields such as blood
flow simulation or combustion
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Introduction (3)

• It is believed that SLD requirements such as
coalescence, breakup and splashing can be modeled
using mature technology from other fields

• Method must not discriminate according to geometry
analyzed (nacelle vs. wing) but must be generic enough
to handle all bodies in similar fashion

• Resulting tool must be upgradeable, synchronous with
tools used in Aero, traceable
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Introduction (4)

• 3-D CFD may be thought to be expensive but the incremental cost
of icing analysis is small compared to generating meshes and
solving viscous flows

• Such meshes and viscous flow solutions have in general already
been carried out by Aero or CFD groups. Ignoring them for icing
analysis is a waste of valuable information

• 3-D CFD cost is small compared to experimental testing

• 3-D CFD cost pales when compared to flight testing

• 3-D CFD is used to complement or focus development or
certification testing
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Computational Approach (1)

• The FENSAP-ICE icing simulation system is comprised
of 4 modules: clean/degraded flow, droplet impingement,
ice growth and conjugate heat transfer

• Non-thermal systems only require flow and droplet
impingement for design and analysis

• Hot air and electro-thermal systems design and analysis
require water runback, ice growth and conjugate heat
transfer
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Computational Approach (2)

Initial Mesh

FENSAP: 3D Flow Solution DROP3D: 
Eulerian Impingement

ICE3D: 
Ice Accretion and Runback

FENSAP: 
ALE Mesh Movement

OptiMesh: 
Adaptive Mesh CHT3D:

Heat Loads

Turboprops Helicopters Turbojets Intakes Flight Simulators

A Second Generation Integrated System for
(Aero + In-flight Icing) Simulation and Certification



FAA In-flight Icing/Ground De-icing International Conference, Chicago, June 2003

• Any CFD (Euler/N-S) code: shown here is a
Fluent solution, after mesh adaptation with
OptiMesh

• FENSAP, FENSAP-ICE’s native CFD
module, is based on FEM

• Includes k-epsilon and k-omega low-Re and
high-Re turbulence models

• Includes Spalart-Allmaras turbulence model,
with fixed transition and surface roughness

• Includes mesh movement using an ALE
method

Computational Approach (3) - Flow Solver
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• 3-D Eulerian non-particle-tracking
module based on FEM

• Takes into account drag, buoyancy and
gravitational forces

• Can simulate supercooled droplets or
snow particles

• Produces field values of LWC and
droplet velocity, as well as catch
efficiencies on all walls

Computational Approach (4) - Impingement
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• 3-D ice growth module, uses a Finite
Volume Method

• Addresses both streamwise and cross-flow
directions simultaneously

• Based on the assumption of thin film on the
surface

• Does not require empirical relations for
convection heat transfer; these are taken
from air flow solution

Computational Approach (5) - Ice Growth
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• 3-D conjugate heat transfer interface

• Can be used for any convection-conduction
problem, with any number of interfaces

• Includes thin film calculation module for
evaporation

• Can accommodate non-matching grids and
different types of meshes at all interfaces
(any tetrahedral, hexahedral, prismatic,
pyramidal or hybrid combinations)

Computational Approach (6) - Heat Transfer
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Computational Approach (7) - Adaptation

• Is needed to accommodate the odd
shapes of ice (large roughness)

• Edge-based, anisotropic (highly-
stretched) mesh adaptation module

• Mesh movement, edge refinement,
coarsening, swapping

• Increases accuracy and reduces
mesh efforts

• Example shown here is FENSAP
Euler solution over a complete 747
(upper portion of wing shown)
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Computational Approach (8) - Actuator Disk

• Implementation of a through-flow actuator
disk model in finite element

• Infinitely thin disk, without inlet-exit pairs

• Injects adequate amounts of momentum and
energy in flow stream

• Satisfies mass conservation and therefore
implicitly creates streamtube contraction
upstream and downstream of disk

• Disk can be of arbitrary shape and attitude

• Can be used to simulate propellers and rotors,
as well as internally for ducted fans
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Numerical Results (1)

• Increasing complexity from:
– 2-D airfoil
– 2-D airfoil with flap deployed
– 3-D wing including sweep and dihedral
– 3-D wing in tunnel
– 3-D tiltrotor aircraft without rotors
– 3-D tiltrotor with rotors

• All test cases run with:
– Single droplet size
– Equivalent flight and atmospheric conditions
– Tiltrotor aircraft components in forward flight configuration
– Unstructured tetrahedral and prismatic meshing
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Numerical Results (2)

• Incidence of 3.1° AoA in 2-D and equivalent sectional lift in 3-D

• Altitude of 2694 ft

• Ambient temperature of -4 °F

• True airspeed of 194 knots

• LWC of 0.3 g/m3

• Droplet size of 19.2 µm

• Accretion time of 15 minutes
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Numerical Results (3)

Mach number distribution

2-D airfoil without and with 19º flap deflection
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Numerical Results (4)

Ice Accretion
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The BA 609
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Numerical Results (5)
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Numerical Results (6)
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• Differences between 2-D airfoil and 3-D wing section are mostly due
to tunnel effects
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Numerical Results (7)

Collection efficiency Simulated fuel vent

Cylindrical mounts

3-D wing simulation,
including icing tunnel

effects
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Numerical Results (8)

Collection efficiency on 
fuel vent

Collection efficiency
on icing tunnel sidewalls
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Numerical Results (9)

Ice growth on 
wing leading edge

Ice growth on
fuel vent
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Numerical Results (10)

Collection efficiency Ice growth at junction of
empennage and stabilizer

Ice growth at junction
of outboard wing and

conversion actuator fairing

3-D complete
tiltrotor aircraft,
without rotors
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Numerical Results (11)

• Complete tiltrotor aircraft with propellers modeled as actuator disks

• Flow-through actuator disk concept implemented via FEM

• Different from exit/inlet actuator disk concept

• Source terms add momentum, angular momentum, energy and
pressure to flow field

• Disks are transparent to droplets, but their effects are felt through the
modified flow field
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The FEM-based Actuator Disk Model
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Numerical Results (12)

Mach number distribution and streamlines

3-D complete tiltrotor aircraft, with rotors
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Numerical Results (13)

Sectional cut of droplet velocity vectors

3-D complete tiltrotor aircraft, with rotors
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Numerical Results (14)

Collection efficiency

3-D complete tiltrotor aircraft, with rotors
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Numerical Results (15)

Ice accretion larger than 1 mm, no rotors, isometric and side views
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Numerical Results (16)

Ice accretion larger than 1 mm, no rotors, top and bottom views
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Numerical Results (17)

• 2-D results do not always provide the real picture

• 3D CFD capability can model complete icing tunnel test
section for “correct” experimental comparisons

• Including rotors as actuator disks changes the location of
the attachment line and collection efficiency peak
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Conclusions (1)

• Method can handle complex geometries of an industrial
interest in a cost-effective way

• Incremental cost of icing analysis is small compared to
volume mesh generation for complex bodies and flow
solution (already done by CFD groups)

• Progress was demonstrated through problems of
increasing geometrical complexity
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Conclusions (2)

• CFD can complement testing to gain understanding of
unavailable conditions

• CFD does not require use of scaling laws and eliminates
potential experimental inaccuracies associated with
control of water flow rate, relative humidity, temperature,
droplet size, tunnel walls, truncated models, etc.

• CFD is another tool in the toolbox of the icing analyst to
design improved ice protection schemes
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Future Work

• Conduct icing analysis of helicopter in forward flight with
main and tail rotors modeled; difficulties are associated
with advancing and retreating portions of blade
circumference

• Use mesh adaptation strategies to move mesh around
iced surfaces; it is expected that it will provide more
robustness than ALE, especially for concave surfaces


